Chemical Shielding Tensors for a Silicon-Carbon **Double Bond**

Jarrod J. Buffy,[†] Robert West,^{*,†} Michael Bendikov,[‡] and Yitzhak Apeloig*,[‡]

Department of Chemistry, University of Wisconsin-Madison Madison, Wisconsin 53706 Department of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry Technion-Israel Institute of Technology, Haifa 32000, Israel

Received September 15, 2000

Measurements of NMR chemical shielding tensors (CST) have been important in aiding the understanding of the nature of the chemical bond and in particular for multiple bonding involving heavier main group elements. Chemical shielding tensors have been reported and interpreted for compounds containing Si=Si,¹ P=P,² Sn=Sn,³ C=P, and C=P⁴ bonds. Although stable silenes, $R_2Si=CR'_2$, have been known since 1981,⁵ no information on the ²⁹Si or ¹³C tensors in these molecules is available. Here we report the first experimental determination and theoretical calculations⁶ of the solid-state NMR chemical shielding tensors for a silene, (tBuMe₂Si)(Me₃Si)Si=2-Ad (1),⁷ as well as theoretical calculations for simpler model systems (2-6) (Table 1). We find a large anisotropy of the CST, indicating a highly asymmetric electron distribution around the Si=C bond, which is typical for a genuine classical π -bond.

Experimental measurements were carried out by the slowspinning CP/MAS technique,8 yielding sidebands which were analyzed by the Herzfeld-Berger method9 to determine the tensor elements (Table 1). Determination of the ²⁹Si tensor components was straightforward. Figure 1 shows an experimental spectrum and the corresponding computer simulation using the values (ppm) $\delta_{11} = 149.86, \ \delta_{22} = 20.23, \ \delta_{33} = -14.45$. Determination of the ¹³C shielding tensor components for the doubly bonded carbon atom in 1 proved much more difficult, because of overlapping

* Corresponding authors. E-mails: west@chem.wisc.edu and chrapel@ techunix.technion.ac.il.

University of Wisconsin.

(1) West, R.; Cavalieri, J. D.; Buffy, J. J.; Fry, C.; Zilm, K. W.; Duchamp, J. C.; Kira, M.; Iwamoto, T.; Müller, T.; Apeloig, Y. J. Am. Chem. Soc. 1997, 119, 4972

(2) Zilm, K. W.; Webb, G. G.; Cowley, A. H.; Pakulski, M.; Orendt, A. J. Am. Chem. Soc. 1988, 110, 2032

(3) Zilm, K.; Lawless, G. A.; Merrill, R. M.; Millar, J. M.; Webb, G. G. J. Am. Chem. Soc. 1987, 109, 7236.

(4) Duchamp, J. C.; Pakulski, M.; Cowley, A. H.; Zilm, K. W. J. Am. Chem. Soc. 1990, 112, 6803.

(5) For the most recent reviews, see: (a) Brook, A. G.; Brook, M. A. Adv. Organomet. Chem. **1996**, 39, 71. (b), Müller, T.; Ziche, W.; Auner, N. In The Chemistry of Organosilicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: New York, 1998; Vol. 2, Chapter 16.

John Wiley & Sons: New York, 1998; Vol. 2, Chapter 16.
(6) For earlier (outdated) calculations of the magnetic shielding tensor for H₂C=SiH₂, see: Fronzoni, G.; Galasso, V. *Chem. Phys.* **1986**, *103*, 29.
(7) Apeloig, Y.; Bendikov, M.; Yuzefovich, M.; Nakash, M.; Bravo-Zhivotovskii, D.; Blaser, D.; Boese, R. *J. Am. Chem. Soc.* **1996**, *118*, 8, 12228.

(8) In a drybox, ~ 100 mg of 1 was placed in an airtight 7-mm ZrO₂ rotor. Measurements were made on a Varian Unity 300-MHz (proton) NMR spectrometer operating at a sample frequency of 59.587 MHz (for ²⁹Si), with a Doty Scientific Inc. probe. Spinning speed was 1-3 kHz, the CP mixing time was 5.0 ms followed by a 4 s delay; the pulse width was 6.5 μ s. The spectra were referenced to external (Me₃Si)₄Si and Me₄Si for ²⁹Si and ¹³C, respectively. Analysis of the sidebands to obtain the CST was done on a Sun SPARC 5 workstation using the STARS program, version 2.

(9) Herzfeld, J.; Berger, A. E. J. Chem. Phys. 1980, 73, 6021.

Table 1. Calculated and Observed Chemical Shift Tensors^{a,b}

	$\delta_{ m iso}{}^{ m m}$	δ_{11}	δ_{22}	δ_{33}	$\Delta \delta^n$	CSA ¹⁸
1, experimental	50.3 ^f	149.9	20.2	-14.5	164.3	147.0
$(tBuMe_2Si)Me_3SiSi=Ad, 1^d$	55.5 ⁸	165.4^{g}	16.3 ^g	-15.2^{g}	180.5^{g}	164.8^{g}
	(72.2)	(198.2)	(22.4)	(-4.1)	(189.0)	(202.3)
$(tBuMe_2Si)Me_3SiSi=Ad, 1^d$	5.8^{h}	27.8	12.4	-22.7	50.5	32.9
$(tBuMe_2Si)Me_3SiSi=Ad, 1^d$	-9.7^{i}	0.8	-14.2	-15.8	16.6	15.8
$H_2Si=CH_2(2)$	59.6	264.3	-15.4	-70.1	334.4	307.1
	(70.4)	(286.2)	(-18.6)	(-56.4)	(342.6)	(323.7)
$Me_2Si=CMe_2(3)$	85.2	202.6	58.9	-5.8	208.4	176.1
	(90.7)	(214.0)	(53.0)	(5.1)	(208.9)	(185.0)
$(H_3Si)_2Si=CMe_2(4)$	42.8	173.1	-8.8	-36.1	209.2	195.6
	(59.5)	(206.0)	(-2.6)	(-25.0)	(231.0)	(219.8)
$Me_2Si=SiMe_2(5)^{j}$	87.8	182.9	71.0	9.7	173.2	142.5
	(96.3)	(189.0)	(89.3)	(10.6)	(178.5)	(139.1)

	¹³ C values ^e								
	$\delta_{\mathrm{iso}}{}^m$	δ_{11}	δ_{22}	δ_{33}	$\Delta \delta^n$	CSA18			
1, experimental	197 ^k	382	160	49	333.0	277.5			
1, calculated	197.4 ^g	371.5 ^g	192.8 ^g	28.0 ^g	343.5 ^g	261.1^{g}			
	(219.8)	(419.3)	(209.8)	(30.3)	(389.0)	(299.3)			
$H_{2}Si=CH_{2}\left(2\right)$	103.1	251.9	65.7	-8.2	260.0	223.1			
	(117.6)	(281.9)	(78.5)	(-7.7)	(289.6)	(246.5)			
$Me_2Si=CMe_2(3)$	119.6	243.8	96.1	19.1	224.7	186.2			
	(134.2)	(268.9)	(113.5)	(20.2)	(248.7)	(202.1)			
$(H_3Si)_2Si=CMe_2 (4)$	179.0	363.3	160.5	13.3	350.0	276.4			
	(201.4)	(411.1)	(177.4)	(15.6)	(395.5)	(314.5)			
Me ₂ C=CMe ₂ (6), experimental ¹	123	222	119	29	193	152			
$Me_2C=CMe_2(6)$	127.3	220.9	124.4	36.8	184.1	140.3			
	(133.9)	(232.6)	(133.9)	(35.3)	(197.3)	(148.0)			

^a At GIAO-MP2/6-311+G(2df,p)//B3LYP/6-31(d). Values in parentheses are at GIAO-B3LYP/6-311+G(2df,p)//B3LYP/6-31(d). ^b Relative to TMS. ^c For the Si=C silicon atom. ^d Atom in bold indicates the atom for which the values are given. ^e For the Si=C carbon atom. ^f 51.7 ppm in C₆D₆ solution.⁷ ^g GIAO–B3LYP values corrected according to GIAO-MP2 calculations for 4; i.e., δ (1, corrected) = δ (1, B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d))+[δ(4,MP2/6-311+G(2df,p)// $B3LYP/6-31(d)) = \delta(4, B3LYP/6-311+G(2df,p)//B3LYP/6-31(d))].$ ^h Measured value: 1.0 ppm (both in the solid state (using MAS/NMR) and in C₆D₆⁷). ^{*i*} Measured values: -14.8 ppm (MAS/NMR, solid state), -14.5 ppm (in C₆D₆ solution).^{7 *j*} Planar structure.²² ^{*k*} 196.8 ppm in C₆D₆ solution.⁷ ¹Zilm, K.W: Conlin, R. T.; Grant, D. M.; Michl, J. J. Am. Chem. Soc. **1980**, 102, 6672. ${}^{m} \delta_{iso} = (1/3)(\delta_{11} + \delta_{22} + \delta_{33}). {}^{n} \Delta \delta$ $=\delta_{11}-\delta_{33}.$

Figure 1. Slow-spinning, CPMAS ²⁹Si NMR of 1. (a) Observed spectrum. (b) Computer fitting for the resonance of the Si=C silicon atom.

peaks from other carbon atoms in the molecule and poor crosspolarization from protons to the ¹³C=(Si) atom. Matching of the spinning sidebands allowed estimation of the ¹³C CST, but with error limits of ± 5 ppm (95% confidence). The isotropic (δ_{iso}) ²⁹Si and ¹³C chemical shifts of **1** in the solid state, of 50.3 and

10.1021/ja003389z CCC: \$20.00 © 2001 American Chemical Society Published on Web 01/11/2001

[‡] Technion.

Figure 2. Orientation of the principal shielding tensor components.

197 ppm respectively (see Table 1), are very similar to those observed for a solution of 1 in C_6D_6 (51.7 and 196.8 ppm).⁷

To allow the assignment of the CST we have carried out quantum mechanical calculations^{10a} for $\mathbf{1}$ and for the model compounds **2–6**. The geometries of 1-6 were fully optimized^{10b} using the hybrid-density functional (DFT) method^{10c} using the B3LYP functional^{10d} with the 6-31G(d) basis set^{10a} (denoted as B3LYP/ 6-31G(d)). The NMR chemical shielding tensors were calculated^{10a} using the GIAO (Gauge Included Atomic Orbitals) method¹¹ coupled with the hybrid-DFT^{10c,d} and the 6-311+G(2df,p) basis set,^{10a} using the B3LYP/6-31G(d) optimized geometries^{10e} (these calculations are denoted as GIAO-B3LYP/6-311+G(2df,p)// B3LYP/6-31G(d)). For 2-6 we have also performed GIAO calculations coupled with the perturbative second-order Möller-Plesset theory, that is, using the GIAO-MP2 method¹² (denoted as GIAO-MP2/6-311+G(2df,p)//B3LYP/6-31(d)).

The calculated CST of 1-6 are given in Table 1, and their directions in space are defined in Figure 2. The agreement between the calculated¹³ and experimentally measured tensors for 1 is generally good (Table 1). Thus, the calculations predict the isotropic ²⁹Si and ¹³C signals of the Si=C bond in 1 as precisely as $\pm 1-5$ ppm, but there are larger deviations in the individual tensors. Particularly large deviations of 33 and -21 ppm are found for the ¹³C chemical tensor components δ_{22} and δ_{33} . We think that these large theoretical-experimental differences result from experimental difficulties in determining the δ_{22} and δ_{33} values due to signal overlaps in the ¹³C NMR spectra, and not from errors in the calculations. Thus, both GIAO-B3LYP and GIAO-MP2 calculations predict very accurately the $^{13}\text{C}~\delta_{22}$ and δ_{33} values in ethylenes (e.g., see 6, Table 1) and the ²⁹Si tensor components in 1 (with maximal errors for δ_{11} of ~15 ppm at MP2¹³).

The most strongly deshielded tensor component, δ_{11} , (for both C and Si) is associated with the in-plane axis (i.e., in the XY plane) perpendicular to the Si=C vector (Figure 2). The applied magnetic field causes rotation along this axis and mixes the σ -(Si=C) bonding electrons with the π^* (Si=C) orbital and the π -(Si=C) electrons with σ^* (Si=C), leading to the observed strong

(11) (a) Ditchfield, R. *Mol. Phys.* **1974**, *27*, 789. (b) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. **1990**, *112*, 8251. (c) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. **1996**, *104*, 5497. (12) (a) Gauss, J. Chem. Phys. 1993, 99, 3629. (b) Gauss, J. Chem. Phys.

Lett. 1992, 191, 614. (13) In agreement with previous experience 11c,12a we find that the B3LYP

method apparently does not include sufficient electron correlation to describe properly the chemical shift tensors of the Si=C bond, and the errors, especially for δ_{11} , are large (Table 1). The GIAO-MP2 calculations significantly improves the results for δ_{11} (e.g., for **6**, Table 1). Consequently for the larger **1**, for which GIAO-MP2 calculations are not practical, we have corrected the GIAO-B3LYP chemical shift tensors for 1 by using the GIAO-MP2 calculations for the smaller 4 (see footnote g in Table 1).

anisotropic deshielding.14 IGLO (Individual Gauge for Localized Orbitals)¹⁵ calculations indicate that the $\sigma(Si=C) \rightarrow \pi^*(Si=C)$ interaction contributes to the deshielding significantly more than the alternative $\pi(Si=C) \rightarrow \sigma^*(Si=C)$ mixing.¹⁶ The orientation of the δ_{22} and δ_{33} components for the doubly bonded carbon and silicon atoms are different. For the doubly bonded carbon atom the most shielded component is δ_{33} which is aligned perpendicularly to the molecular plane, while the intermediate δ_{22} component is aligned along the Si = C axis. These axis orientations are similar to those found for $C=C^{17}$ and $Si=Si^1$ doubly bonded compounds. In contrast, for the silicon atom the orientation of the δ_{22} and δ_{33} CST components is different from that in C=C or in Si=Si compounds; the most shielded component δ_{33} is aligned along the Si=C axis, while δ_{22} is aligned perpendicularly to the molecular plane (Figure 2).

Comparison of the calculated tensor values for 1-6 (Table 1) leads to the following conclusions: (1) Substitution of the silene with silyl or alkyl, R and R' groups (i.e., 3 and 4) does not change the orientation of the shielding tensor components relative to the molecular frame but strongly affects the magnitude of the components (Table 1). (2) The ¹³C NMR chemical shifts for the doubly bonded C atom in silenes 1 and 4 show the largest CSA¹⁸ of 261 and 276 ppm, respectively, significantly larger than for 2 and 3 (223 and 186 ppm) or for ethylene 6 (140 ppm). This is consistent¹⁴ with the much longer UV absorption maximum of 1 $(322 \text{ nm})^7$ relative to 2 $(258 \text{ nm})^{19}$ and the 2 eV lower ionization potential of 1^{20a} relative to 2.^{20b} The unusually large ¹³C CSA of 1 and 4 can be related to their mode of substitution with alkyl (at C) and silvl (at Si) groups, which reduces the polarity of the C=Si bond relative to that of 2 and 3.7 This localizes the π^* and the σ^* Si=C orbitals more on C and less on Si (in H₂C=SiH₂) both π^* and σ^* are strongly localized at the more electropositive Si⁷). In contrast, but consistent with the above interpretation, the ²⁹Si chemical shift in **1** shows a relatively small CSA (165 ppm), in particular relative to 2 (307 ppm).²¹ (3) The ¹³C CSA in alkyl substituted silenes is larger than in the analogous alkenes; for example, 3 (186 ppm) versus 6 (140 ppm). (4) The 29 Si CSA for silene 3 (176 ppm) is larger than for the similarly substituted planar Me₂Si=SiMe₂, **5**, (146 ppm).²²

In conclusion, the measured and calculated tensor components in silenes indicate the presence of a genuine Si=C π -bond. Our results parallel closely those for alkenes¹⁷ and disilenes,¹ which also display marked deshielding of the δ_{11} tensor component, resulting in large CSA values, often >200 ppm for C and >150 ppm for Si.

Acknowledgment. We thank Dr. Thomas Müller (Frankfurt) for many helpful discussions and the NSF (Madison), the U.S.-Israel Binational Science Foundation, and the Minerva Foundation in Munich for financial support.

JA003389Z

(14) Ramsey, N. F. Phys. Rev. 1950, 78, 699.

(15) (a) Kutzelnigg, W.; Fleischer, U.; Schindler, M. In NMR Basic Principles and Progress; Springer-Verlag: New York, 1991; Vol. 23, pp 167-262. (b) Malkin, V. K.; Malkin, O. L.; Eriksson, L. A.; Salahub, D. R. J. Am. Chem. Soc. 1994, 116, 5898. (c) The Pipek-Mezey localization scheme was used, see: Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916.

(16) (a) Dr. T. Müller, Frankfurt, personal communication. We thank Dr. T. Müller for carrying out these calculations. (b) Also in disilenes the $\sigma(Si=Si) \rightarrow \pi^*(Si=Si)$ interaction contributes to the deshielding significantly more that the $\pi(Si=Si) \rightarrow \sigma^*(Si=Si)$ mixing, see: Tossell, J. A.; Lazzeretti, P. Chem. Phys. Lett. 1986, 128, 420.

(17) Facelli, J. C.; Grant, D. M.; Michl, J. Acc. Chem. Res. 1987, 20, 152.

(18) Chemical shift anisotropy (CSA) is defined as: $\delta_{11} - [(\delta_{22} + \delta_{33})^2]$ (19) Reisenauer, H. P.; Mihm, G.; Maier, G. Angew. Chem., Int. Ed. Engl. 1982, 21, 854.

(20) (a) The first ionization potential (IP_1) of **1** is 6.9 eV. Bendikov, M.; Solouki, B.; Amon, M.; Auner, N.; Apeloig, Y. Manuscript in preparation. (b) IP₁ of **2** is 8.9 eV, see: Rosmus, P.; Bock, H.; Solouki, B.; Maier, G.; Mihm, G. Angew. Chem., Int. Ed. Engl. 1981, 20, 598.

(21) The difference in r(Si=C) between 2 (171 pm) and 1 (174 pm) increases the CSA for both Si and C by 5–7 ppm, a smaller change than in disilenes (12–14 ppm for a similar change in $r(Si=Si)^1$). (22) Planar Me₂Si=SiMe₂ lies only 1 kcal/mol (at B3LYP/6-31G(d)//

B3LYP/6-31(d)) above the fully optimized trans-bent Me₂Si=SiMe₂.

⁽¹⁰⁾ The Gaussian 98 program^{10a} was used. (a) Frisch, M. J.; Trucks, G. (10) The Gaussian 98 program^{14a} was used. (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998. (b) Frequency calculations were performed for all optimized structures to determine stationary points as minima or as saddle points; (c) Parr, R. G.; Yang, W. *Density-functional theory of atoms and molecules*; Oxford University Press: Oxford, 1989. (d) Becke, A. D.; *J. Chem. Phys.* **1993**, *98*, 5648. (e) This level reproduces accurately the X-ray structure of **1**.⁷